RTM Nagpur University Proposed Syllabus (Theory) 2020-21

Semes	ster	Course Title (Subject)	Hours / Week			Cre dits	Max Continu al	imum Mai Univer sity		Exam Duratio n (Hrs.)
			L	T	P	uits	Assessm ent	Exami nation		11 (1119.)
IV		Fluid Mechanics & Hydraulic Machines	3	1	-	4	30	70	100	3

Sr.	Course Objective						
No.	The objective of this course is—						
	To classify fluid & their Properties under static and dynamic condition and apply the						
1	equations to various hydraulic components and working principles of various measuring devices.						
	To establish the relationship between various properties & apply mathematical treatment						
2							
	to various problems related to fluid system & their Design.						
2	To introduce various principles & design of hydraulic Machines i.e. Turbines. Centrifugal						
3	and Positive Displacement Pump.						
4	To explain the working Principles of Fluid mechanics and their Practical applications in						
	designing the fluid systems						
5	To appreciate the application of Similitude in the design of Hydraulic Machines.						
	Course Outcomes						
After successful completion of this course the student will be able to:							
CO1	classify and explain fluid their properties, fluid in rest condition, types of flow & flow						
CO1	measuring devices and mathematical application of equations on hydraulic components.						
COA	explain behavior of fluid in motion condition and application of Bernoullie's equation to						
CO2	fluid flow measuring devices.						
CO3	apply dimensional analysis to design hydraulic machines and different losses of fluid						
	flow through pipes.						

	(i) classify different layout of hydro-electric power plant and								
COA	(ii) analyze design characteristics of hydraulic machines i.e. turbines (impulse and								
CO4	reaction), Pelton turbine , Francis turbine, propeller turbine and Kaplan								
	turbine								
COF	explain the working principle & design of Centrifugal and reciprocating pump & practical								
CO5	application of similitude & model testing.								

SYLLABUS			
Contents			
UNIT-I Fluid Properties:	09		
Types of fluids, Mass Density, Specific Weight, Specific Gravity, Newton's Law of			
Viscosity, Dynamic Viscosity, Stroke's Theorem, Surface Tension, Capillarity,			
Compressibility, Vapour pressure.			
Introduction of Fluid Kinematics, Types of Flow- steady, unsteady, uniform, non-			
uniform, laminar, turbulent.			
Fluid Statics:- Pressure, Measurement of pressure using manometers, Hydrostatic			
law, Pascal's law, Pressure at a point, Total pressure, Centre of pressure, Pressure on			
a plane (Horizontal, vertical, Inclined) and Curved Surfaces, Archimedes's principle,			
Buoyancy and stability of floating and submerged bodies, Metacentric height			

UNIT-II Fluid Dynamics	09		
Introduction to Navier-Stroke's Equation, Euler equation of motion along a stream			
line, Bernoulli's equation, application of Bernoulli's equation to pitot tube, venturi			
meter, orifices, orifice meter.			
Laminar And Turbulent Flow :- Definition, Relation between pressure and shear			
stresses, Laminar flow through round pipe, Turbulent flow and velocity distribution.			
,			
UNIT-III Flow Through Pipes	09		
Flow Through Pipes :TEL, HGL, Energy losses through pipe, Darcy-Weisbach			
equation, Minor losses in pipes, TEL, HGL, Moody diagram, pipes in series and			
parallel, Siphons, Transmission of power.			
Dimensional Analysis, Dimensional Homogeneity, Rayleigh method &			
Buckingham's pi –Theorem.			
Introduction to Similitude and model testing.			
UNIT-IV Theory of turbo machines	10		
Turbo Machine classification, Elements of hydro-electric power plant,			
Impulse Turbine:- principles of operation , constructional features, Velocity			
Diagram and Analysis, Design parameters, Performance characteristics, Governing.			
Reaction or pressure Turbine:- principles of operation, Classification, Degree of			
reaction, comparison over Pelton Turbine, Draft tube, Cavitation in Turbine,			
Francis Turbine, :- Types, Constructional features, Installations, Velocity Diagram			
and analysis, Design parameters, Performance characteristics, Governing.			
Propeller Turbine, Kaplan Turbine: -Constructional features, Velocity			
Diagram and analysis, ,			
UNIT- V Hydrodynamic pumps:-	09		
Centrifugal pumps:- Principle of operation, Classification, Component of Centrifugal			
Pump, Various heads, Velocity triangles and their analysis, N.P.S.H., Cavitation's in			
pumps, Installation and operation, Performance characteristics, Introduction to self-			
priming pumps			
Reciprocating pump: Basic principle, Classification, Main Components, Slip, Work			
Done, Indicator Diagram, Cavitation's, Air vessels,,			

Sr. No.	List of Tutorials
01	Applications based on fluid properties such as block sliding over an inclined plane, capillary phenomenon etc.
02	Study of Manometers
03	Study of stability of floating bodies and submerged bodies
04	Determination of coefficient of discharge of flow meters
05	Verification of Bernoulli's equation
06	Losses in pipes (Hagen Pois. Equation)
07	Design of Pelton Turbine and Francis Turbine
08	Design of Propeller & Kaplan Turbine
09	Design of Centrifugal Pump
10	Design of Reciprocating Pump

References:

Text Books Recommended:

- 1. Fluid Mechanics, Dr. R.K. Bansal, Laxmi Publication (P) Ltd. New Delhi
- 2. Engineering Fluid Mechanics, Kumar K.L.,S. Chand & company Ltd. Eurasia
- 3. Publication House
- 4. Fluid Mechanics & Hydraulic Machines, R.K. Rajput, S. Chand & Company Ltd.
- 5. Hydraulic and Fluid Mechanics, Modi P.N. and Seth S.M., Standard Book House.
- 6. Fluid Mechanics & Fluid Power Engineering D. S. Kumar, S.K. Kataria& Sons
- 7. Publications

Reference Books Recommended:

- 1. Introduction to Fluid Mechanics, James E.A., John and Haberm W.A., Prentice Hall of India
- 2. Fluid Mechanics, Jain A.K., Khanna Publication
- 3. Engineering Fluid Mechanics, Garde R.J. and MirajGoankar, Nemchand&Bros,Roorkee, SCITECH, Publication (India) Pvt. Ltd.
- 4. Fluid Mechanics and Fluid Power Engineering, Dr. D.S. Kumar, S.K. Kataria& sons
- 5. Fluid Mechanics, Frank M. White, McGraw Hill Publication
- 6. Fluid Mechanics, Cengel&Cimbla, Tata McGraw Hill
- 7. Fluid Mechanics, Streeter V.L. and Wylie E.B., McGraw Hill International Book co.
- 8. Fluid Mechanics with Engineering Applications, E. Finnemore&Franzini, Tata Mc-Graw Hill
- 9. Hydraulic Machines-Theory and Design, V. P. Vasandani, Khanna Publishers
- 10. Fluid Mechanics, A. K. Jain, Khanna Publishers
- 11. Hydraulic & Compressible Flow Turbo-machines, A. T. Sayers, Mc-Graw Hill

RTM Nagpur University Proposed Syllabus (Practical)

Semeste	Course Title(Subject)	Hours / Week			Credit s	Maximum Marks			
r				Continual		University	Total		
		L	T	P		Assessment	Examination		
IV	FLUID MECHANICS & HYDRAULIC MACHINES	-	-	0 2	01	25	25	50	

Course Outcomes						
After successful completion of this Practical course the student will be able to						
CO1	Explain what is Stability condition of floating bodies, Law of conservation of Energy.					
CO ₂	Apply Frictional losses and Hydraulic co-efficient in the pipe flow.					
CO ₃	Estimate the Performance characteristics of Pelton Turbine					
CO4	Estimate the Performance characteristics of Francis Turbine & Kaplan Turbine.					
CO5	Estimate the Performance characteristics of Centrifugal Pump & Reciprocating Pump.					

List of Practical's

Sr. No.	List of Practical's
01	To determine the metacentric height of given floating vessel.
02	To verify Bernoulli's theorem.
03	To find friction losses in pipe.
04	To find the value of co-efficient of given venture meter fitted in a pipe.
05	To find the value of co-efficient of Discharge for a given orifice meter.
06	Performance characteristics of Pelton wheel.
07	Performance characteristic of Francis Turbine.
08	Performance characteristic of Kaplan Turbine.
09	Performance characteristic of Variable Centrifugal speed pump
10	Performance characteristic of Reciprocating pump.
11	To find Reynold's Number

Suggested References:

- 1. Fluid Mechanics, Frank M. White, McGraw Hill Publication
- 2. Hydraulic Machines-Theory and Design, V. P. Vasandani, Khanna Publishers
- 3. Fluid Mechanics, John F. Douglas, Pearson
- 4. Introduction to Fluid Mechanics, James E.A., John and Haberm W.A., Prentice Hall of India