RTM Nagpur University, Nagpur Four Year B. Tech. Course (Revised Curriculum as Per AICTE Model) B.Tech. VIII Semester (Computer Technology) Scheme

	(Computer Technology) Scheme
Total Credits: 3 Teaching Scheme: Lectures: 03 Hours/Week Tutorials: 0 Hours/Week Practical: 0 Hours/Week	Elective –VI Social Networks Subject Code: BTCT801T-1 Examination Scheme: Duration of University Exam: 03 Hrs. College Assessment: 30 Marks University Assessment: 70 Marks

Course Objective:

- 1 To understand highly interconnected and hence more complex social networks.
- 2 To represent connected social networks in form of graph.
- 3 To apply graph theory, sociology, game theory.
- 4 To use tools and extract statistics from social networks.

Course Outcomes:

At the end of this course student are able to:

- 1. Learn social networks, its types and representation
- 2. Understand weak ties, strong and weak relationships, homophily and calculate 3. Analyse links.
- 4. Understand Power Laws and Rich-Get-Richer Phenomena.
- 5. Understand Small World Phenomenon.
- Week 1: Introduction
- Week 2: Handling Real-world Network Datasets
- Week 3: Strength of Weak Ties
- Week 4: Strong and Weak Relationships (Continued) & Homophily
- Week 5: Homophily Continued and +Ve / -Ve Relationships
- Week 6: Link Analysis
- Week 7: Cascading Behaviour in Networks
- Week 8: Link Analysis (Continued)
- Week 9: Power Laws and Rich-Get-Richer Phenomena
- Week 10: Power law (contd..) and Epidemics
- Week 11: Small World Phenomenon
- Week 12: Pseudocore (How to go viral on web)

- 1. https://onlinecourses.nptel.ac.in/noc23_cs19/preview
- 2. Networks, Crowds and Markets by David Easley and Jon Kleinberg, Cambridge University
- 3. Social and Economic Networks by Matthew O. Jackson, Princeton University Press, 2010.

Elective -VI Reinforcement Learning		
Total Credits: 3	Subject Code: BTCT801T-2	
Teaching Scheme: Lectures: 03 Hours/Week Tutorials: 0 Hours/Week Practical: 0 Hours/Week	Examination Scheme: Duration of University Exam: 03 Hrs. College Assessment: 30 Marks University Assessment: 70 Marks	

- 1 It aims to model the trial-and-error learning process that is needed in many problem situations where explicit instructive signals are not available.
- 2 It has roots in operations research, behavioral psychology and AI.
- 3 The goal of the course is to introduce the basic mathematical foundations of reinforcement learning.
- 4 It highlight some of the recent directions of research.

Course Outcomes:

At the end of this course student are able to:

- 1. Understand Bandit algorithm and its mathematical formulation.
- 2. Use dynamic programming for reinforcement learning.
- 3. Perform function approximation and apply LSM.
- 4. Fit Q, DQN & Policy Gradient for Full RL.
- 5. Use combinatorial models for complex problems.
- Week 1 Introduction
- Week 2 Bandit algorithms UCB, PAC
- Week 3 Bandit algorithms Median Elimination, Policy Gradient
- Week 4 Full RL & MDPs
- Week 5 Bellman Optimality
- Week 6 Dynamic Programming & TD Methods
- Week 7 Eligibility Traces
- Week 8 Function Approximation
- Week 9 Least Squares Methods
- Week 10 Fitted Q, DQN & Policy Gradient for Full RL
- Week 11 Hierarchical RL
- Week 12 POMDPs

References:

- 1. https://archive.nptel.ac.in/courses/106/106/106106143/
- 2. R. S. Sutton and A. G. Barto. Reinforcement Learning An Introduction. MIT Press. 1998

In lame floor

ll2

bring

S grand delsh

Total Credits: 3	GPU Architectures and Programming
Teaching Scheme : Lectures: 03 Hours/Week Tutorials: 0 Hours/Week Practical: 0 Hours/Week	Subject Code: BTCT801T-3 Examination Scheme: Duration of University Exam: 03 Hrs. College Assessment: 30 Marks University Assessment: 70 Marks

- 1 To introduce basics of conventional CPU architectures, their extensions for single instruction
- 2 To understand concept in the form of single instruction multiple thread processing (SIMT) as is
- 3 To teach architecture specific details.
- 4 To introduce different architecture-aware optimization techniques relevant to both CUDA and

Course Outcomes:

At the end of this course student are able to:

- 1 Understand conventional CPU architectures, their extensions for single instruction multiple data
- 2 Program in CUDA about data space & synchronization.
- 3 Apply optimization on kernals, thtreads etc.
- 4 Learn basics of OpenCL.
- 5 Design an application using neural networks.
- Week 1: Review of Traditional Computer Architecture Basic five stage RISC Pipeline, Cache Memory, Register File, SIMD instructions
- Week 2: GPU architectures Streaming Multi Processors, Cache Hierarchy, The Graphics Pipeline
- Week 3: Introduction to CUDA programming
- Week 4: Multi-dimensional mapping of dataspace, Synchronization
- Week 5: Warp Scheduling, Divergence
- Week 6: Memory Access Coalescing
- Week 7: Optimization examples: optimizing Reduction Kernels
- Week 8: Optimization examples: Kernel Fusion, Thread and Block Coarsening
- Week 9: OpenCL basics
- Week 10: CPU GPU Program Partitioning
- Week 11: Application Design: Efficient Neural Network Training/Inferencing
- Week 12: Application Design: Efficient Neural Network Training/Inferencing,cont'd

Ste grand delet

- 1. https://onlinecourses.nptel.ac.in/noc23_cs61/preview.
- 2. "Computer Architecture -- A Quantitative Approach" John L.Hennessy and David A. Patterson "Programming Massively Parallel Processors" - David Kirk and Wen-mei Hwu.
- 3. Heterogeneous Computing with OpenCL" -- Benedict Gaster, Lee Howes, David R. Kaeli.

habotore Alush AD And See grand delsh

Total Credity 2	tive Analytics-Regression and Classification
rotal Cicuits. 5	Subject Code: BTCT802T-1
Teaching Scheme: Lectures: 03 Hours/Week Tutorials: 0 Hours/Week Practical: 0 Hours/Week	Examination Scheme: Duration of University Exam: 03 Hrs. College Assessment: 30 Marks University Assessment: 70 Marks

- 1 The course will provide an overview of fundamental ideas in statistical predictive models.
- 2 The objective is to understand how statistical models handle prediction problems.
- 3 The stress will be on understanding the construction of the models and implementation.
- 4 It is a core course if students aspire to be Data Scientists.

Course Outcome:

At the end of this course student are able to:

- Understand predictive models, LSM, Normal equations and GMT. 1
- Understand regression models and infer its statistical inference. 2
- Check model assumptions and bias variance tradeoff. 3
- Perform regression analysis in various programming languages.
- Apply regression models and classification for predictive analysis. 5

Week 1:

- Landscape of the predictive models.
- Least Squares method

Week 2:

- Normal Equations:
- Gauss Markov theorem

Week 3:

- The geometry of Regression Model and Feature Engineering
- Statistical Inference of Regression Coefficient

Week 4:

- Checking Model Assumptions
- Model Comparison with R-squared, RMSE, AIC or BIC

Week 5:

- Model Complexity and Bias-Variance tradeoff
- Feature selection and Dimension Reduction

Week 6:

- Multicollinearity and Variance Inflation Factor
- Regularization with LASSO, Ridge and Elastic Net
- Ridge Regression with Python

pelach 10

gansad delsh

Week 7:

- Regression Analysis with Python
- Regression Analysis with R
- Regression Analysis with Julia

Week 8: Major Applications of Regression Models

- Capital Asset Pricing Model
- Bootstrap Regression
- Time Series Forecasting with Regression Model
- Granger Causal model.

Week 9:

- Logistic Regression
- MLE of coefficient of Logistic Regression

Week 10:

- Fit Logistic Regression with optim function in R
- Fit Logistic Regression with glm function in R
- Fit Logistic Regression with sklearn in Python
- Fit Logistic Regression in Julia

Week 11:

- Logistic Regression and Inference
- Discriminant Analysis

Week 12:

- Multinomial Logit Regression
- Generalised Linear Regression
- Poisson Regression
- Negative Binomial Regression

References:

- 1. https://onlinecourses.nptel.ac.in/noc23_ma46/preview.
- 2. An Introduction to Statistical Learning by James, Witten, Hastie, and Tibshirani, Springer (https://www.statlearning.com/).
- 3. The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman, Springer (https://hastie.su.domains/Papers/ESLII.pd).
- 4. Regression and Other Stories by Gelman, Hill, and Vehtari, by Cambridge University Press (https://avehtari.github.io/ROS-Examples/).

e felish AD Pril Se grassed delse

Elective -VII Block Chain and its Application		
Total Credits: 3	Subject Code: BTCT802T-2	
Teaching Scheme: Lectures: 03 Hours/Week Tutorials: 0 Hours/Week Practical: 0 Hours/Week	Examination Scheme: Duration of University Exam: 03 Hrs. College Assessment: 30 Marks University Assessment: 70 Marks	

- 1. Learn its capability of providing a transparent, secured, tamper-proof solution for interconnecting different stakeholders in a trustless setup
- 2. This subject will cover the basic design principles of Blockchain technology and its applications over different sectors
- 3. Additionally, the course also provides tutorials on setting up blockchain applications using one of the well-adopted permissionless blockchain platforms - Ethereum, and one permissioned blockchain platform - Hyperledger
- 4. Provide its applications

Course Outcomes:

At the end of this course student are able to:

- 1. Understand basic crypto primitives.
- 2. Understand elements and evolution of blockchain.
- 3. Understand consensus in permission less and permissioned models.
- 4. Hands on ethereum smart contracts and hyperledgers.
- 5. Perform decentralized identity management, interoperability.
- Week 1: Introduction to Blockchain Technology and its Importance
- Week 2: Basic Crypto Primitives I Cryptographic Hash
- Week 3: Basic Crypto Primitives II Digital Signature
- Week 4: Evolution of the Blockchain Technology
- Week 5: Elements of a Blockchain
- Week 6: Blockchain Consensus I Permissionless Models
- Week 7: Blockchain Consensus II Permissioned Models
- Week 8: Smart Contract Hands On I Ethereum Smart Contracts (Permissionless Model)
- Week 9: Smart Contract Hand On II Hyperledger Fabric (Permissioned Model)
- Week 10: Decentralized Identity Management
- Week 11: Blockchain Interoperability
- Week 12: Blockchain Applications

Fredome Aslash Az Pul

grasad delet

- Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition, Imran Bashir, Packt Publishing, 2020, ISBN: 9781839213199, book website: https://www.packtpub.com/product/mastering-blockchain-third-edition/9781839213199.
- 2. Hyperledger Tutorials https://www.hyperledger.org/use/tutorials.
- 3. Ethereum Development Resources https://ethereum.org/en/developers.
- 4. Online materials and case studies.

Indatore. Alash as pul

& grasid delsh

Elective –VII Data Analytics using Python		
Total Credits: 3	Subject Code: BTCT802T-3	
Teaching Scheme: Lectures: 03 Hours/Week Tutorials: 0 Hours/Week Practical: 0 Hours/Week	Examination Scheme: Duration of University Exam: 03 Hrs. College Assessment: 30 Marks University Assessment: 70 Marks	

- 1. To learn analytics using python programming language.
- 2. Learn hypothesis testing and ANOVA model.
- 3. Regression models and its implementation.
- 4. Learn clustering and classification.

Course Outcomes:

At the end of this course student are able to:

- 1. Understand data analytics and Python fundamentals.
- 2. Perform sampling using various methods and perform hypothesis test or ANOVA test.
- 3. Fit linear regression model and calculate various errors.
- 4. Apply ROC.
- 5. Apply clustering and classification using python programming
- Week 1: Introduction to data analytics and Python fundamentals
- Week 2: Introduction to probability
- Week 3: Sampling and sampling distributions
- Week 4: Hypothesis testing
- Week 5: Two sample testing and introduction to ANOVA
- Week 6: Two way ANOVA and linear regression
- Week 7: Linear regression and multiple regressions
- Week 8: Concepts of MLE and Logistic regression
- Week 9: ROC and Regression Analysis Model Building
- Week 10: c² Test and introduction to cluster analysis
- Week 11: Clustering analysis
- Week 12: Classification and Regression Trees (CART)

Judanne place De Pud & Frank Velst

- 1. https://archive.nptel.ac.in/courses/106/107/106107220/
- 2. McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. "O'Reilly Media, Inc.".
- 3. Swaroop, C. H. (2003). A Byte of Python. Python Tutorial.
- 4. Ken Black, sixth Editing. Business Statistics for Contemporary Decision Making. "John Wiley & Sons, Inc".
- 5. Anderson Sweeney Williams (2011). Statistics for Business and Economics. "Cengage Learning".
- 6. Douglas C. Montgomery, George C. Runger (2002). Applied Statistics & Probability for Engineering. "John Wiley & Sons, Inc"
- 7. Jay L. Devore (2011). Probability and Statistics for Engineering and the Sciences. "Cengage Learning".
- 8. David W. Hosmer, Stanley Lemeshow (2000). Applied logistic regression (Wiley Series in probability and statistics). "Wiley-Interscience Publication".
- 9. Jiawei Han and Micheline Kamber (2006). Data Mining: Concepts and Techniques. "
- 10. Leonard Kaufman, Peter J. Rousseeuw (1990). Finding Groups in Data: An Introduction to Cluster Analysis. "John Wiley & Sons, Inc".

Indoore Wheel Ad Just Ste grand deld